Design and Development of an Intelligent Energy Controller for Home Energy Saving in Heating/Cooling System

Design and Development of an Intelligent Energy Controller for Home Energy Saving in Heating/Cooling System

Show full item record

Title: Design and Development of an Intelligent Energy Controller for Home Energy Saving in Heating/Cooling System
Author: Abaalkhail, Rana
Abstract: Energy is consumed every day at home as we perform simple tasks, such as watching television, washing dishes and heating/cooling home spaces during season of extreme weather conditions, using appliances, or turning on lights. Most often, the energy resources used in residential systems are obtained from natural gas, coal and oil. Moreover, climate change has increased awareness of a need for expendable, energy resources. As a result, carbon dioxide emissions are increasing and creating a negative effect on our environment and on our health. In fact, growing energy demands and limited natural resource might have negative impacts on our future. Therefore, saving energy is becoming an important issue in our society and it is receiving more attention from the research community. This thesis introduces a intelligent energy controller algorithm based on software agent approach that reduce the energy consumption at home for both heating and cooling spaces by considering the user’s occupancy, outdoor temperature and user’s preferences as input to the system. Thus the proposed approach takes into consideration the occupant’s preferred temperature, the occupied and unoccupied spaces, as well as the time spent in each area of the home. A Java based simulator has been implemented to simulate the algorithm for saving energy in heating and cooling systems. The results from the simulator are compared to the results of using HOT2000, which is Canada’s leading residential energy analysis and rating software developed by CanmetENERGY’s Housing, Buildings, Communities and Simulation (HBCS) group. We have calculated how much energy a home modelled will use under emulated conditions. The results showed that the implementation of the proposed energy controller algorithm can save up to 50% in energy consumption in homes dedicated to heating and cooling systems compared to the results obtained by using HOT2000.
Date: 2012
URI: http://hdl.handle.net/10393/20576
Supervisor: El Saddik, Abdulmotaleb
Faculty: Génie / Engineering
Degree: MCS

Files in this item

Files Size Format View
Abaalkhail_Rana_2012_thesis.pdf 13.11Mb application/pdf View/Open

This item appears in the following Collection(s)

Show full item record


Contact information

Morisset Hall (map)
65 University Private
Ottawa ON Canada
K1N 6N5

Tel. 613-562-5800 (4563)
Fax 613-562-5195

ruor@uottawa.ca