Bounded cocycles: von Neumann algebras and amenability.

Bounded cocycles: von Neumann algebras and amenability.

Show simple item record

dc.contributor.advisor Giordano, T., en
dc.contributor.author Bates, Teresa. en
dc.date.accessioned 2009-03-25T20:09:45Z
dc.date.available 2009-03-25T20:09:45Z
dc.date.created 1995 en
dc.date.issued 2009-03-25T20:09:45Z
dc.identifier.citation Source: Masters Abstracts International, Volume: 34-04, page: 1597. en
dc.identifier.isbn 9780612049567 en
dc.identifier.uri http://hdl.handle.net/10393/10278
dc.description.abstract In a 1993 preprint Guyan Robertson proved that every uniformly bounded representation of a discrete group on a finite von Neumann algebra is similar to a unitary representation. We have since discovered that this result was first proved in a paper of Vasilescu and Zsido, published in 1974 (VZ). In this thesis we generalise this result for discrete groupoids, proving that every uniformly bounded cocycle into a finite von Neumann algebra is cohomologous to a unitary cocycle. The corresponding result for cocycles into finite dimensional algebras was proved in (Zim3). We also derive some equivalent definitions of amenability of group actions and provide a new proof of a result of Zimmer regarding uniformly bounded cocycles on amenable G-spaces. We develop some machinery in order to prove these results. This is the theory of ${\cal G}$-flows in which we explore the actions of groupoids on Borel fields of sets. Our development of this theory follows that of the usual theory of flows from topological dynamics. en
dc.format.extent 126 p. en
dc.publisher University of Ottawa (Canada). en
dc.subject.classification Mathematics. en
dc.title Bounded cocycles: von Neumann algebras and amenability. en
dc.type M.Sc.Thesis (M.Sc.)--University of Ottawa (Canada), 1995. en

Files in this item

Files Size Format View
MM04956.PDF 1.891Mb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record


Contact information

Morisset Hall (map)
65 University Private
Ottawa ON Canada
K1N 6N5

Tel. 613-562-5800 (4563)
Fax 613-562-5195

ruor@uottawa.ca